
Using the ProtoMol/MDL 3.0 TestSuite

Trevor Cickovski, Joseph Coffland, Chris Sweet and Jesús A. Izaguirre
Laboratory for Computational Life Sciences, University of Notre Dame

July 31, 2008

1 Obtaining the TestSuite
The testsuite for ProtoMol/MDL 3.0 is obtainable by checking out the most recent version of the software
from the sourceforge.net server, using Subversion. You may checkout the software anonymously
using the following command:

svn co https://protomol.svn.sourceforge.net/svnroot/protomol protomol

Upon executing this command, a protomol/ subdirectory will be produced in your working space.
Change to this directory and you will find a subdirectory protomol-testwhich contains all regression
tests for both PROTOMOL and MDL , along with Python scripts to execute the tests. Thus before using the
testsuite, you must minimally have version 2.5 of Python installed (MDL requires this version anyway).

2 Running Tests
The testsuite expects two things to be contained in your executable PATH: the Python interpreter and
the ProtoMol executable. Thus you must compile ProtoMol before running the testsuite, and must pro-
vide its containing directory in the PATH environment variable. Then to run the entire testsuite, from the
protomol-test directory you can just run:

python testHarness

which will produce output similar to the following:

********** 2008-25-07 17:46:14 UTC-4 ************
Test Name: [file...] Result
************** Test Suite: Config ***************
LeapfrogTest: [PASS]
NMLTest: [PASS]
BornForceTest: [PASS]
LeapfrogTruncatedShadowTest: [PASS]
CoulombForceCutoffTest: [PASS]
VelacTest: [PASS]
....

1

*************** Test Suite: MDL *****************
LeapfrogTest: [PASS]
NMLTest: [PASS]
BornForceTest: [PASS]
....

The testsuite contains tests for both PROTOMOL (the Config testsuite) and MDL (the MDL testsuite).
Each of their listings contains a set of tests which are each designed individually to test one feature of the
software. For example, LeapfrogTest tests the Leapfrog propagator, NML tests Normal Mode Langevin
dynamics, BornForceTest tests computation of the Born radii for implicit solvent simulations. Assum-
ing you checked out a fresh version of the software and did not make any source code modifications, all
PROTOMOL and MDL tests should initially pass.

2.1 Options
Running the testHarness script with the -h option will provide help:

> python testHarness -h
Usage: testHarness [options] [command]

Command:
enable <test> enable a previously disabled a test
disable <test> disable a test
init <test> initialize a test
reset <test> reset a test by removing its .expect files
run <test> run a specific test
try <test> run a test and view its results (implies -I)
view <test> view a test’s files

If no command is given all tests will be run.

Options:
-h, --help show this help message and exit
-I, --interactive run tests in interactive mode
-V, --valgrind run tests under valgrind
-v increase verbosity
-C, --disable-color disable color output

Thus the testHarness script accepts both flags or special actions to take for certain tests. As the help
output states, if no command is given then all tests will be run, which we have already seen. We can enable
or disable certain tests, i.e.:

> python testHarness disable ConfigTests/LeapfrogTest

It is important to note that disabling or enabling a test has effect until rerunning enable or disable,
even after the test harness stops executing. Initializing a test must be performed when adding a new test
to the testsuite. Alternatively, assuming correct file placement the new test will run automatically but an

2

UNINITIALIZEDmessage will be displayed when the test harness is executed, prompting for initialization.
We outline this in Chapter 2. Resetting a test is appropriate if at some point the results produced by a test
in the suite are discovered to be incorrect, this will remove all benchmark output which is being compared,
and require the test to be reinitialized. By using the run command, we can just run one test, i.e.:

> python testHarness run ConfigTests/NMLTest

which is useful if one test is being debugged, to avoid rerunning all tests upon every modification. The
try command is similar, but provides interactivity if the test fails, which we outline below. Benchmark
files for a specific test can be viewed using the view command.

The flags are fairly self explanatory; we have already seen -h for the help screen, -v provides more
helpful output upon a test failure, -C removes color and -V will also profile execution using ValGrind
(valgrind.org) assuming it is installed. A particularly helpful flag is the -I flag, which runs tests
interactively. Individual tests can be run interactively with the try command as outlined above. Interactivity
provides the ability for a user to choose the action to take upon a test failure. When a test fails, output similar
to the following is produced:

***************** 2008-31-07 11:42:39 UTC-4 ************************
Test Name: [file...] Result
***************** Test Suite: Config *******************************
LeapfrogTest: std [FAIL]
(a)bort (c)ontinue (D)isable (d)iff (i)nitialize (l)og (r)eset
(t)est (q)uit (v)iew?

There are several actions that can subsequently be taken. The <a> key will abort the test harness script,
and <c> and <q> take identical action by continuing the harness without taking any action. The failed test
can be disabled (<D>), reset (<r>) to use the output currently generated as the new benchmark, or initialized
(<i>). Benchmark output can be viewed by pressing the <v> key. Pressing the lowercase <d> will run
the diff command to generate a description of differences between currently generated and benchmark
output. The <l> key displays any logged output from the testsuite, and <t> will rerun the test (useful if the
test has been initialized or reset). Note the current test remains active until <a>, <c> or <q> is pressed.

3 Creating New Tests
3.1 Test Architecture
In order to define new PROTOMOL and MDL tests, you must understand the testsuite structure and compo-
nents. Within protomol-test, you will find two subdirectories ConfigTests and MDLTests. Each
of these subdirectories contains a set of small Python scripts, one per test. A requirement enforced by the
testsuite is that each of these scripts end in Test. To show an example, let’s look at AngleForceTest:

#!/usr/bin/python
import os

os.system(’python ProtoMolCheck AngleForce xyz’)

3

Note that the last line of the script is a system call to the Python interpreter, passing as arguments a script
ProtoMolCheck, the current test name (without the Test suffix), and a set of one or more file suffixes.
In general, the tests for PROTOMOL will run the ProtoMolCheck Python script and the MDL tests will
run the MDLCheck script. These are also contained within their respective testsuite subdirectories.

ProtoMolCheck takes as arguments the test name and file suffixes. All data files are contained
within the data/ subdirectory of ConfigTests. ProtoMolCheck will execute PROTOMOL on a
configuration file with the same name as the test name, concatenated with a .conf suffix. By default,
ProtoMolCheck checks three types of output: standard output, standard error, and the return code (which
should always be zero upon a successful execution). These outputs are compared to files in the data direc-
tory with the .expect suffix – for example, AngleForceTest.return.expect,AngleForceTest.stdout.expect,
etc. If file suffixes are provided as arguments to ProtoMolCheck, the DataComparator script is
run to compare numerical values between a .orig file and an output file generated at runtime consist-
ing of the test name concatenated with the appropriate suffix (for example, the above case would compare
AngleForceTest.xyz and AngleForceTest.xyz.orig). Thus it is mandatory that in each test
configuration file output file names which should be compared are named properly. Once compared, the
generated output files are removed from the data/ directory.

The DataComparator source code is contained within a subdirectory of the protomol-test root,
called src/. When the protomol-test scons script is run, the DataComparator executable is pro-
duced in the protomol-test root directory. For any test which check file output as well as defaults,
the DataComparator is run. The DataComparator accepts a command line argument for tolerance
when comparing values, which in the ProtoMolCheck script is set to 0.0000001. When a PROTOMOL-
generated output file is compared to a .orig, each numerical value is compared to ensure the absolute value
of the difference falls within this tolerance. If it does not, a Files do not match message is sent to
standard output and the test fails. The DataComparator can recognize XYZ trajectory and snapshot
files, as well as PDB files and DCD trajectories, and energy files.

MDL tests work very similar to those for PROTOMOL, with the differences being (1) that they are
contained within a subdirectory MDLTests instead of ConfigTests, (2) that scripts with the test name
concatenated with the .py extension are executed as opposed to running the PROTOMOL executable on a
.conf file, and (3) the driver script is named MDLCheck instead of ProtoMolCheck. Everything else
works the same.

3.2 Creating a PROTOMOL Test
Now suppose we wanted to create our own test for PROTOMOL, for a new integrator FooBar. For the
sake of simplicity, we’ll assume that the integrator is single timestepping (STS) and its only necessary
parameter is a timestep. Suppose we wanted to test the integrator on alanine dipeptide in vacuum. An
appropriate name for our new test would be FooBarTest, so our PROTOMOL configuration file must be
named FooBarTest.conf and might look something like this:

firststep 0
numsteps 1

Constraints
angularMomentum 0
comMotion 0
exclude scaled1-4

4

posfile alanine.pdb # from solvated simulation with same name
psffile alanine.psf
parfile alanine.par
temperature 310

boundaryConditions vacuum

cellManager Cubic

Integrator {
level 0 FooBar {

timestep 0.5
force Bond
force Angle
force Dihedral
force Improper
force LennardJones Coulomb

-algorithm NonbondedSimpleFull
}

}

finpdbposfile FooBarTest.pdb
allenergiesfile FooBarTest.energies

Note that we generated two types of output: positions in a PDB snapshot (most appropriate to test when
dealing with integrators) and an energies file, and that we named them using the test name concatenated
with the appropriate suffix. We place this file in the directory ConfigTests/data. Now, we must create
a FooBarTest script within the ConfigTests/ directory one level up in the hierarchy. We must call
ProtoMolCheck through a system call to the Python interpreter, passing the test name and appropriate
suffixes which are in this case pdb and energies:

import os

os.system(’python ProtoMolCheck FooBar pdb energies’)

The test has now been created, because the testHarness automatically executes all Python test
scripts within the ConfigTests and MDLTests subdirectories of the root. When the testHarness
script is executed, you’ll see the following output:

FooBarTest: [UNINITIALZED]

If a test is UNINITIALIZED, that means that the .expect and .orig files have not been created
yet. To initialize and create these files, you’ll want to run the testHarness with the -I option, which
pauses on any test that does not pass and provides you with choices:

python testHarness -I

5

which will stop after detecting an uninitialized test:

FooBarTest: [UNINITIALZED]
(a)bort (c)ontinue (D)isable (d)iff (i)nitialize (l)og (r)eset
(t)est (q)uit (v)iew?

Now you will want to press the <I> key to initialize this test. Once initialized, the testHarness
script will continue. If you run the script a second time, the test should pass:

FooBarTest: [PASS]

3.3 Creating an MDL Test
Once the new FooBar integrator has been wrapped for MDL , we can also develop an analogous MDL
test for the integrator. The Python script FooBarTest.py for running the same simulation protocol as the
configuration file for the PROTOMOL test, would look like this:

from MDL import *

phys = Physical()
io = IO()
io.readPDBPos(phys, "data/alanine.pdb")
io.readPSF(phys, "data/alanine.psf")
io.readPAR(phys, "data/alanine.par")
phys.bc = "Vacuum"
phys.temperature = 310

forces = Forces()
ff = forces.makeForceField(phys, "charmm")

io.files = {’energies’:(’data/FooBarTest.energies’, 1)}

prop = Propagator(phys, forces, io)
prop.propagate("FooBar", steps=1, dt=0.5, forcefield=ff)
io.writePDBPos(phys, ’data/FooBarTest.pdb’)

This file is placed in the MDLTests/data directory, and we next must create a FooBarTest script
one level higher in the directory hierarchy, which runs MDLCheck:

import os
os.system(’python MDLCheck FooBar pdb energies’)

That’s it! Rules with respect to initialization also apply to MDL tests.

6

4 Regression Testing Rules
As a rule of thumb, the regression testsuite should be executed upon any change of PROTOMOL or MDL
source code viewed as a permanent change. This of course has different meanings for developers and users;
for developers the testsuite should be executed before committing updated source code to the centralized
repository, for users the testsuite should be executed to ensure the software still runs properly after any local
source code modifications.

Note that changing PROTOMOL source code can affect the precompiled binaries of MDL , and so both
sets of regression tests should be run upon changes to PROTOMOL . Changes to pure Python libraries of
MDL only require the MDL tests to be run to ensure validity. This is an implication of the multi-tiered
design of the problem solving environment: higher level layers (i.e. a domain-specific language like MDL
) only depend on levels lower in the hierarchy (i.e. the PROTOMOL computational back end).

5 Contact Info
If you have questions or comments, please direct them to:

Laboratory For Computational Life Sciences
University of Notre Dame
325 Cushing Hall
Notre Dame, IN 46556

Or e-mail:

1. LCLS: lcls@nd.edu

2. Trevor Cickovski: cickovtm@eckerd.edu

3. Jesús A. Izaguirre: izaguirr@nd.edu

7

